
Int. J. Solids Structures, 1972, Vol. 8, pp. 327 to 346. Pergamon Press. Printed in Great Britain

ANALOGY BETWEEN MICROPOLAR CONTINUUM AND
GRID FRAMEWORKS UNDER INITIAL STRESS

Z, p, BAZANTt and M. CHRISTENSENt

Department of Civil Engineering, Northwestern University, Evanston, Illinois 60201

Abstract-It is shown that the micropolar medium is a continuum approximation to large grid frameworks
under initial axial forces. The strain energy, equilibrium conditions and boundary conditions are formulated,
and some inconsistencies in the previous attempts of derivation of the micropolar analogy for gridworks are
pointed out. The finite difference method, which is one possible means for the analysis of the overall behavior
of a large framework, is investigated and found, by means of numerical examples, to give rather accurate results
using much fewer unknowns than the exact analysis. The method is also applicable to problems ofoverall buckling.
It is shown further that the so-called substitute frame in general does not exist, although the finite difference
method serves the same purpose. Finally, it is demonstrated that in micropolar continua there exist certain
boundary disturbances which rapidly decay with distance from the boundary. A simplified treatment of such
disturbances is proposed.

1. INTRODUCTION

WHEN the methods of frame analysis are applied to the spatial analysis of the tallest build
ings presently constructed, a system of over 100,000 algebraic equations with a band width
of over 3000 is obtained. With systems of such a large size the capacity of computers
presently available is obviously overtaxed. If the fields of dynamics, stability and non
linear behavior are entered, the size of the system poses difficulties even in the case of
plane frameworks.

As a rule, large frames have a regular structure with constant or smoothly variable
properties of members. Experience with the exact solutions of the overall behavior of
such frames indicates that the displacements of joints vary smoothly from joint to joint.
Consequently, the unknown displacements may be grouped together and characterized
with a much smaller number of parameters, e.g. by the displacement values in every fifth
or tenth joint, assuming that the values at the intermediate joints may be determined
with sufficient accuracy by interpolation. This is one method of reducing the size of the
system.

In certain cases, especially when the structure is of simple shape, even simpler solutions
are possible if the structure is approached as a field problem. This can be done in two ways.

One possibility is to apply the finite difference calculus and obtain exact solutions.
This path has been explored for certain cases by many authors, beginning with Bleich
and Melan [3]. A detailed survey of this approach can be found in the book by Wah and
Calcote [9J ; for recent advances along this line consult, e.g. [4J.

An alternative possibility is to make a continuous approximation. Generally such an
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idea is quite old; plates and shells have long been used as a model for out-of-plane bending
of grillages and lattice shells. However, the theory of a continuum which is suitable as an
approximation to the in-plane behavior of a grid framework has been developed only
recently. Eringen [5J termed such a continuum micropolar. It represents an extension
of the classical Cosserat continuum [7J and a special case of the more general theories
of structured continua [5,8]. Its characteristic features are the existence of couple stresses
and asymmetric shear stresses, and the independence of microrotation from the displace
ment field. The possibility of applying these theories to lattice structures and frames was
discussed by Wozniak [l1J in rather general terms but apparently nothing specific has
been presented prior to the paper by Banks and Sokolowski [2]. Their model is not adequate,
however, because it represents a Cosserat continuum in which the microrotation and
macrorotation are equal, while the corresponding quantities in a frame, that is, the joint
rotations and member rotations, are in general unequal. The micropolar continuum as a
model for a rectangular gridwork with diagonals was studied by Askar and Cakmak [1].
However, as will be shown later [see equation (9) belowJ, their analogy also appears to be
unsatisfactory because all the important terms in the continuous approximation of poten
tial energy have not been included. A similar spatial cubic gridwork with diagonals was
investigated by Tauchert [9aJ who assumed, similarly as Banks and Sokolowski [2J, that
for a unit step of grid the couple stresses approximate the couples presented by lattice
bars at midspans, in the intersections with the sides of a unit cube centered about the
grid point. But this assumption, although seemingly obvious, is not correct, as equation
(19) below will demonstrate. The effect of initial stress and buckling of micropolar bodies
probably has not yet been treated.

The purpose of this paper is to formulate the analogy between a micropolar medium
and a planar uniform rectangular grid framework under initial stress, and to substantiate
its applicability by some numerical results.

It must be admitted that an endeavor to formulate a continuum approximation of a
discrete system is counter to the current trend. Nevertheless, there exist various cases in
which such an approximation is useful. Although the applications will have to be left to
a separate paper, a brief mention ofthe advantages is pertinent. In many high rise buildings,
for instance, large grid frameworks interact with continuous bodies, such as stiffening
walls, floor slabs or foundations. When the bodies are of rectangular shape, Fourier
analysis is evidently the simplest method of solution and can be similarly implemented as
in the case of folded plates. For this purpose, the frame must be modelled as a continuum.
This approach appears to be much simpler than the alternative of breaking the wall into
a discrete system of finite elements and using, for instance, the methods of finite difference
calculus for the frame. Even when the frame does not interact with continuous bodies, the
continuum approximation of it is advantageous because the finite difference solutions,
while being exact and completely analogous to the continuous solutions, lead to more
complex expressions. Also, there exist certain cases which admit a simple analytical
solution for a continuum while the analogous, discrete, finite difference solution does not
satisfy the boundary conditions. Yet another advantage to approximating a frame as a
continuum is that the more sophisticated analytical solutions obtained recently for various
bodies with couple stresses can then be applied, even if the discrete counterparts of the
solutions are not available. Finally, the continuous approximation may be used as a
means of transition to a coarser discrete system with a lower number of unknowns. It
will be shown that this approach gives an answer to the problem of a substitute frame.
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2. FRAMEWORK UNDER INITIAL STRESS

Consider an isolated elastic member of a framework as shown in Fig. 1 which in an
unstressed state is parallel to axis x of cartesian axes x and y. Let the member be in equi
librium under an initial axial force pO of any magnitude (positive for compression) and

FIG. 1. Positive incremental forces and deformations of a member (assuming the member is parallel
to the x-axis in its initial stressed state).

initial bending moments and shear forces, M~, M~, V~, V~, acting at the ends a, b. Assume
that the initial longitudinal and lateral displacements, u~, u~, v~, v~ and the initial end
rotations cP~, cP~ are small. Further, assume that the member subsequently undergoes an
infinitesimal, incremental deformation characterized by small increments in the longitudinal
and lateral displacements, Ua , Ub , Va' Vb and small increments in the end rotations, CPa' CPb'

The corresponding infinitesimal increments of axial force, bending moments and shear
force will be denoted by P, M a , M b and V, assuming also that there are no incremental
loads between the extremities of the member. The following linearized relationship then
holds between the small incremental end reactions and displacements [6]:

ksc

ks

o
(1 )

where ljJ = (Vb - Va)!L = the counterclockwise rotation of the line ab joining the member
ends; L = the length of the member in its unstressed state; k = EI/L; E' = EA/L; I and
A = the moment of inertia and area of the cross-section; E = Young's modulus of the
material and sand c are the well-known stability functions of the initial axial load pO.
If the cross-section of the member is constant, sand c are expressed as follows [6]:

ex(sin ex - ex cos ex) ex - sin ex
(po > 0) (2a)s = 2 _ 2 cos ex - ex sin ex ' c=

sin ex - ex cos ex

ex(ex ch IX - sh IX) sh IX-IX
(po < 0) (2b)s= c=

2 - 2 ch IX + ex sh IX ' IX ch IX - sh IX
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where rJ. = nJ(lpoIIPE) = J(lpoIL/k) and PE = n2 EI/U. For pO = 0, s = 4, c = 1-. If the
cross-section is variable, the functions sand c may be determined by integrating the
differential equation for bending numerically.

The incremental shear force V can be determined from the difference in the moment
equilibrium conditions of the member before and after the incremental deformation.
When higher order terms are dropped, this leads to the relation

V = -(Ma+Mb)/L-poljJ.

Combining this with equation (1) yields:

Ma ks ksc -ks'/L 0 q>a

Mb ksc ks -ks'/L 0 q>b

V -ks'/L -ks'/L ks"/L2 0 Vb-Va

P 0 0 0 E' Ua-Uh

where

(3)

(4)

s' = s(l +c), (4a)

Consider now a regular rectangular grid framework with members parallel to the
cartesian axes x and y. In general, the stiffnesses vary from member to member, either
because of a change in cross-section or a change in initial axial force. Each joint will be
characterized by two numbers, i and j (Fig. 2), increasing in the x- and y-directions,
respectively. The conditions of equilibrium of joint (i,j) may be expressed using equation
(4) to determine the end reactions for each of the four members meeting in the joint. After
algebraic rearrangements, the conditions of equilibrium of horizontal forces, vertical

FIG. 2. Numbering of joints and forces acting on a joint.
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forces and moments, can be brought into the following form:

k II

+ t;(Ui,j+I-2Ui,j+Ui,j-I)+ tL1x(E~)(Ui+l.j-Ui-l.j)
y

+tL1y(kt;)(q>i,j+I-2q>i,j+q>i,j-1 +4q>i,j)+tL1y(k{f)(Ui,j+I-Ui,j-I)+lx"i = 0 (5a)

kxs~
E~(Vi,j+ I 2Vi,j+Vi,j-l) -T(q>i+ l,j-q>i-l,j)

x

k II

+ 2~X(Vi+ l,j-2vi,j +Vi-l,j)+ tL1y(E~)(Vi,j+1 - Vi,j-l)
x

- tL1x (ki:~)(q>i+ l,j -2q>i,j+q>i-l,j+4q>i)

+ Mx (k2~~)(Vi+l,j- Vi-l,)+I yi .i = 0 (5b)

1 I (kxS~)+IAikxsxcx)(q>i + l,j-q>i-l,j)-IL1x Lx (vi+l,j- 2Vi,j+Vi_l,j)

I A (k ) 1 (kys~)+IUy ySyCy)(q>i,j+I-q>i,j-1 +lL1y L
y

(Ui,j+1-2u i,j+Ui,j-I)-mi,j = O.

Here u, v = joint displacements in the x- and y-directions, respectively and q> = joint
rotation; the subscripts i and j, as in Ui,j refer to the numbers of the line of vertical members
and horizontal members, respectively; subscripts x, y imply quantities which pertain to
the members parallel to x or y; lx' I y and m denote small incremental horizontal load,
vertical load and moment applied at the joint and positive in the same sense as the corre
sponding displacement; and finally, kx ' sx' etc. and ky , Sy, etc, represent the average value
at joint (i,j) of the corresponding quantity between two adjacent members of the same
direction, and L1x(" .), L1l ..) represent the differences of the corresponding quantity
between two adjacent members.

Thus, in equations (5a)-(5c) the properties of the members (k, L, E, A) as well as their
initial axial loads (i.e. c, s, Sf, S") are considered as variable from member to member in
both directions.

3. CONTINUOUS APPROXIMAnON

The finite difference expressions in equations (5a)-(5c) are obviously the well-known
second order finite difference approximations to the first and second derivatives in a
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(6a)

rectangular grid whosl' steps are Lx and L y, respectively [9J. Equations (5aH5c) may thus
be approximated by the partial differential equations:

L2

L;(E~u,x),x + 2(kys~cp),y + (kys~u),y + i(kys~),yCP,yy + Ix = 0

(6b)

L; k ' L;(k ' 0+2( xSxLv,xx -2 ySy),yU,yy+m = , (6c)

Here u, v, cp.j~,fy and m represent continuous and sufficiently smooth functions of x and y
whose values at points (Xi' y) approximate the values of ui,i' vi,i' etc.;t subscripts X or y
following a comma denote partial derivatives, e,g, v,x = av/ax, cp,xx = a2cp/ax2; kx' Sx'
s~, ex, E~, etc" are also understood as continuous and smooth functions whose values at
the midspans of the members approximate the actual member properties. (Introduction
of these continuous functions is meaningful only if member properties and initial axial
forces vary gradually from member to member.t)

An alternative approach to obtaining equations (6aH6c) can be based on potential
energy. The expression for the second order approximation to the incremental strain
energy U 1 for a single member is

(7)

plus linear terms - pO(Ub - ua), M~(CPa - t/J) and M~(CPb - t/J). As is well known, such terms
need not be taken into account since they would yield conditions of equilibrium in the
initial stressed state which are assumed to be satisfied. The value (Lt/J2/2) represents, with
an error O(t/J4), the axial extension of the member due to small lateral displacements Va' Vb'
If Ma , M b and P are expressed according to (1), it follows on rearrangement that

(8)

The incremental strain energy U x contained in a pair of horizontal members at joint
(i,j) is a sum of two expressions of form (8). To avoid lengthy discussion, the properties
and initial axial forces of members whose longitudinal axes are in the same line will now
be considered as constant. Then, expanding the value of u, v and cp in joints (i + 1,j) and
(i - Lj) in a Taylor's series about the point (i,j) leads to the continuum approximation,

In equation (9), only the terms with first derivatives of u, v and cp have been retained with
the exception of those higher order terms which can be converted on integration by parts

t The continuous functions u, l', <p may be rigorously defined as the limits of the exact solutions u,.)' 1".j' <P,.j'
for given boundary conditions, as Lx and L yin equations (5aH5c) are considered to tend to zero while the numbers
of joints tend to infinity and the coefficients of equations (6aH6c) are kept constant.

t Equations (6), (12), (15) and (19) for constant member properties have already been presented in [13].
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(10)

to terms containing only first order derivatives.t The term CPCP,xx is of this type since in the
expression for the total energy ')7/ of the structure it can be converted, upon integration
by parts, to the term - cp~x.

The incremental strain energy Uy stored in a pair of vertical members meeting in the
joint (i,j) can be similarly obtained. The element ofthe continuum approximation as shown
in Fig. 3 is periodically repeated in both directions. From this it can be seen that the strain
energy corresponding to the area LxLy of the frame is -!< Ux+ Uy).

~ ~I===::::1. ~I:;::::::::~I L

J [
J [
II II Ii

FIG. 3. Internal forces at the member midspans and their intuitive analogy with the stresses acting on
an element of micropolar continuum.

The total incremental potential energy of the structure, JII, is approximated by the
expreSSIOn

f f 1 dxdy
0lJ = [1{Ux+ U y)- fxu-fyv-mcpJ~-WB

(x) (y) XLy

where WB = the work of the incremental loads applied at the boundary of the structured
body. Integrating the terms involving the products CPCP,xx and CPCP,}'Y by parts (or applying
Green's theorem [9J), the integral (10) takes on the form

(11 )

where
U = :L~E~u~x+ L;E~v~,- L~kxsxcxcp~x - L;kysycycp~y+ 2kxs~(cp - V,x)2

+ 2kys~(cp +U)2 - P~Lxv~x - P~Lyu~y}/(2LxLy) (12)

and W~ = WB plus a certain contour integral of terms involving products cpcp,x and CPCP,y.
Obviously, U can be regarded as the second order terms of the specific incremental strain
energy of the continuum approximating the frame.t

t Terms of this type were not considered by Askar and Cakmak [I]. It can be verified that without these
terms an agreement with the equilibrium equations based on forces acting on a joint cannot be reached.

t The presence of negative terms involving - qJ~x and - qJ~" in equation (12) or terms such as qJqJ.xx and qJqJ.yy

in equation (9) that can also become negative raises questions regarding the conditions for positive definiteness
of the total potential energy. Such conditions must always be met if P~ = p~ = O. That this is indeed so follows
from the positive definiteness of expression (8) for P~ = p~ = O.
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(13)

(15)

The differential equilibrium equations may be derived from the first variation of the
incremental potential ult. This is (without first order terms) given by

bJlJ = Ix fy {L~E~u.xbu,x+L;E~v,ybV,y-L~kxsxCxCI),xbep,x

- L;kysycyep.ybep,y+ 2kxs~(ep - v,x)(bep - bV,x)

+ 2kyS~(ep +u,y)(bep + bU,y) - P~Lxv,xbv,x - P~Lyu,yi5u,y

f s: f,' S:} dx dy- xuu - i 5v - muep LL
x y

plus a certain contour integral which is relevant only for the boundary conditions. If the
terms containing derivatives of the variations are integrated by parts (or the Green's
theorem is used) and the equilibrium condition that [)OIl = 0 for any bu, bV, bep is applied,
one obtains the differential equations of equilibrium which are identical with equations
(6aH6c) for constant member properties, as expected.

If the incremental properties of members and initial axial forces are variables from
member to member, additional terms must be included in the strain energy density.
Proceeding in the same manner as from equation (11) to equations (13) and (6aH6c),
it can be verified that in order to obtain the equilibrium equations (6) for the case of variable
properties, the strain energy density must be given by the expression (12) plus the termt

[L~(kxs~),xep,xv,x- L;(kys~),yep,yu,y]/(2LxLy). (14)

4. RELATION OF THE DISCRETE AND CONTINUOUS MODEL AND
BOUNDARY CONDITIONS

A micropolar continuum was defined by Eringen [5] as a continuum whose potential
energy density depends, in the plane case, on six independent variables u,x' V,y' y, (w-ep),
ep,x' ep,y where y = 2exy = v,x+u,y and w = !<v,x-u,y), Alternatively, y and (w-ep) can be
replaced by variables rx = ty+(w-cp) = v,x-ep and ry = ty-(w-ep) = U,y+ep. Thus it
is seen that U(u.x,v.y,rX,ry,ep,x'CP,y) as given by equation (12) for constant member stiff
nesses represents a micropolar continuum. This continuum is obviously orthotropic.

The stresses axx' ayy' axy' ayx and the couple stresses mxz , myz in the micropolar con
tinuum of constant properties are defined and expressed from equation (12) as follows:

a~x+axx = au/au,x = a~x+E~u,xLx/Ly

a~y+ayy = au/aV,y = a~y+E~v.yLy/Lx

axy = au/arx = aU/av,x = (kxs~v.x-2kxs~ep)/(LxLy)

ayx = au/ary = au/aU,y = (kyS~u,y+2kys~ep)/(LxLy)

mxz = au/aep,x = -kxsxcxep,xLxlLy

myz = au/aep,y = -kysycyep,yLy/Lx

t The continuous functions for kx ' sx' etc. in equations (6a}-(6c) were assumed to approximate the actual
values for the member by their values in the midspan points. However, to obtain expression (14) from (8), the
actual values would have to be approximated by certain average values of continuous functions for kx , •.• within
the interval between the ends of the member.
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where D = U +O"~xu ,x+ O"~yV,y = the total strain energy density and O"~x = - P~/Ly,
O"~y = - P~/Lx are the initial stresses. [The symmetric part O"(xy) and the antisymmetric
part O"[xy) of the stress tensor O"xy can also be expressed directly as O"(xy) = tiJU/iJeXY ' O"[xy) =
tiJU/iJ(w - cp).]

It is also necessary to define the continuum counterparts of the internal forces. These
are characterized by the incremental internal forces in the frame members at midspan
(Fig. 3) and include axial force N, shear force Tand bending moment M which will be taken,
for reasons of convenience, about the point on the straight line connecting the ends of
the member in the deformed position (and not about the point on the deformed neutral
axis). According to (4),

N = E'(ub-ua) = -P }

V = k[s"(vb-va)/L-s'(CPa+CPb)]/L .

M = (Mb-Ma)/2 = tks(l-c)(CPb-CPa)

The end moments M a and M b are related to M, N, V by the following:

(16)

M a = -M-(V+poljJ)L/2, (17)

If the member properties are constant in the framework, the continuous approxima
tions of equations (16) in the x- and y-directions are straightforward and given by:

T.x = (kxs~v,x - 2kxs~cp)/Lx,

M x = tLxkxsx(1- cx)cp,x,

(18)

where N x' Ny, Tx, Ty, M x, My are continuous functions whose values at midspan approxi
mate the internal forces (16), and where Ty was taken as - Vy so that its positive direction
would correspond to the usual continuum convention.

Expressions (15) for the stresses and couple stresses are simply related to the con
tinuous approximations (18) of the internal forces at the midspans,

O"xx = NJLy

O"xy = TJLy

O"yy = Ny/Lx

O"yx = Ty/Lx (19)
2cxM x 2cyMy

mxz = Ly(I- cx) myz = LAl- cy)'

It is interesting to note that, while the normal and shear forces are expressed as resultants
of normal and shear stresses over lengths L y and Lx, the bending moments are not equal
to the resultants Lymxz , Lxmyz of couple stresses mxz and myz ' (For a zero axial force M x =
-Lymxz/2 and My = -Lxmyz/2, so that even the sign of M x and mxz is opposite.) The
analogy which some authors [2,9a] based intuitively on the assumption that the midspan
bending moments are expressed as resultants of couple stresses, i.e. M x = Lymxz and
My = Lxmyz , is thus unrealistic. The reason for the inequality of M x and Lymxz consists,
roughly speaking, in the fact that the bending moment varies along the member, while
N x and Tx are constant along the member. Also, the strain energy of the member due to
CP.x equals tmxzcp,x rather than t(Mx/Ly)cp,x, whereas the energies due to N x and T.x equal
t(Nx/Ly)u,x' and t(Tx/L)(v,x-CP).
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(20)

Finally, the boundary conditions must be defined. At each boundary joint of the frame
work, one quantity of each of the pairs (u,fx)' (v,fy), (/p, m), must be given. In the case of a
continuum approximation, the expressions (18) have an error of higher than second
order only if the functions u, v, /p and their derivatives are evaluated at the midspan of the
beam. Therefore, when the applied loads fx,fy, or m at the boundary joint are prescribed,
the simplest formulation of the boundary conditions may be achieved in a manner similar
to that used in the solution of continuous boundary value problems by the finite difference
method. The gridwork is imagined to be extended beyond the boundary and the hypothetical
values in the nodes outside the physical boundary are used in such a way that the internal
forces at the midspan of the imagined members crossing the boundary transmit the pre
scribed forces into the actual boundary joints (Fig. 4). Thus, using equations (16) and (17),
the conditions on the left vertical and top horizontal boundaries of the framework are.

N x = - p~ Ny = - p~

'4 = V~ ~. = - V~

i =0 i =I
I

i=2

FIG. 4. Fictitious extension of the grid beyond its boundary for the formulation of the free boundary
conditions.

where pB, VB, M B denote the prescribed incremental normal load, tangential load and
moment, respectively, at the actual boundary joint of the frame. Substituting relations
(18), the respective conditions for the left vertical and top horizontal boundaries of the
continuum are obtained as follows:

LxE~u.x = - p~

kxs~v.x-2kxs~/p = V~Lx

L xkxsx(1-cx)/p,x = 2M~+(V~+P~v,x)Lx

LyE~v,y = -p~

kys~u,y+2kys~/p = - V~Ly

LlySP-Cy}/p,y = -2M:-(V:-P~u)Ly.

(21)
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These conditions are imposed all along the line connecting the midspans of the imagined
members crossing the boundary. The continuum boundary can thus be imagined as
located beyond the boundary joints of the frame by Lx/2 and Ly/2, respectively.

5. FINITE DIFFERENCE METHOD AND THE PROBLEM OF A
SUBSTITUTE FRAME

One possibility for solving the field problem of a continuum is the finite difference
method. The form of the finite difference approximations to equations (6aH6c) as well
as the boundary conditions is obvious and will not be written out. The problem is thus
converted back to a discrete one. However, by choosing the steps .1.x,.1.y of the rectangular
grid to be much larger than the distances between the joints. e.g. .1.x = 5Lx '.1.y = 5Ly , the
number of unknowns is considerably reduced.

Structural analysts [12] have been seeking this objective intuitively, trying to find
a substitute frame with greater distances between the joints which would approximate
the actual frame. The substitute frame was usually determined from the requirement
of equal deflections in a certain typical problem. However, a rational definition of a sub
stitute frame must be based on a requirement that its continuum approximation be the
same as for the actual frame. Labeling the quantities for a substitute frame by bars, the
condition that the coefficients of all terms of equations (6aH6c) and the similar finite
difference equations with larger steps .1.x = Lx, .1.y = Ly be equal (or proportional) leads
to the relations (in the case of constant properties of all members):

£~L~ = {3E~L~

kxs~ = {3Kxs~

£'L2 = {3E'Py y y y

kys~ = {3KyS~

k,s; = {3K,s;
(22)

where {3 is an arbitrary parameter. This is a system of eight equations which, however,
involve only five unknowns. namely, Kx , E~, ky , E~ and {3. Therefore a substitute frame in
general does not exist.t

It should be noted, however, that the finite difference equations approximating the
differential equations (6aH6c) in fact serve the same purpose as a substitute frame. In
addition, the finite difference equations have the same form as the equations of a dis
placement method for a frame would have, and therefore, the existing programs for frames
may be easily generalized to include the finite difference solution with steps .1.x, .1.y greater
than Lx, Ly. When one substitutes .1.x = Lx, .1.y = Ly into such a program, the exact
solution is obtained. while for .1.x > Lx, .1.y > Lyan approximate solution is obtained.

In tall building frames one has to account for the fact that axial forces and member
cross sections gradually decrease in the upward direction. Thus, the finite difference
equations with .1.x > Lx and .1.y > Lv for a frame with smoothly variable properties of
members (k, s, c) are needed. These may be obtained directly from equations (5) when the

t It should not be inferred from this conclusion that the safety of the existing tall buildings. which all have
been analyzed with the help of some substitute frame, is in doubt. Design experience. engineering judgment and
intuition has certainly allowed safe designs to be reached even with this approach.
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following replacements are made in them:

Ui,j+l-Ui,j-l ~ (Ui,j+l-Ui,j-l)Ly/l1y, j
Ui,j+I-2ui,j+Ui,j-l ~ (Ui,j+I-2ui,j+Ui,j_l)L;jl1y2,

l1iE~) ~ l1iE~)Lyjl1y, etc,

6. BOUNDARY DISTURBANCES

(22a)

(23)

To achieve good accuracy by the finite difference method, especially if the frame is
not too large, attention must be paid to certain boundary effects typical for structured
media, To elucidate these effects, consider a half-plane y ~ °filled by a framework in
which, in order to avoid complex expressions, it is assumed that Lx = Ly = L, kx =
k y = k, P~ = P~ = 0, Solutions possessing a translational symmetry along axis x will be
investigated. Equation (5b) in this case becomes independent and the difference equations
(5a), (5c) simplify as follows:

L(cpj+ 1 - CPj-l)+ 2(uj+1 - 2uj+ uj_d+IxL2j(6k) = °
3(Uj+ 1 - Uj_ d+ 12Lcpj+ L(cpj+ 1 - 2cpj+ CPj- d- mLj(2k) = °

where the subscripts i have been omitted, Equations (23) represent a system of two linear
ordinary second order difference equations with constant coefficients for the vectors Uj
and CPj [10]. The solution of the homogeneous equation (i.e. Ix = m = 0) may be assumed
as CPj = Crj, uj = Crj where r, C, C are certain constants. Substitution into (23) for Ix =
m = 0) leads to a characteristic equation whose roots are found to be r = 0·0717, 13·93 and
double root 1,0, Including also the particular solution for constant loads Ix and m in every
joint, the following general solution of equations (23) is obtained:

CPi,j = C10·0717
j+ C213·9Y+ C3 +IxLj/(12k) +mj(24k)

Ui,j = 1·156C1LO,0717j-2C3Lj+C4 -0·578C2LJ3.9Y-IxU /j(12k)
(24)

where Cl' C2, C3' C4 are arbitrary constants.
As boundary conditions consider first that the joints at the base are fixed against

displacement, i.e. uj = Oat j = 0, and the joint rotation is prescribed, i.e, cP = CPB at j = 0,
while at infinity (j ~ (0) the internal forces are zero [Fig. 5(a)]. The solution (for Ix =
m = 0) then becomes

(25)

If both rotations and displacements are fixed at the base but at infinity shear force T
per joint is applied, the solution is:

CPi,j = (0·0717j -l)LTj(12k),

Finally, consider that there is a free surface at the base, with half-length vertical members
overlapping below the row of joints number one (j = 1), each of which is loaded by a
moment MB and horizontal force TB [Fig. 5(b)]. At infinity (j ~ (0) assume a homogeneous
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FIG. 5. Boundary conditions (a), (b) giving rise to boundary disturbance and modification (c) of (a) to
remove the disturbance.

state of deformation. Note that Ty = - Vy and IjIy = -(ub-ua)/L. Then, according to
equation (16),

(27)

(28)

For these boundary conditions, the solution is found to be

<Pi,i = -1·078MBO·0717i - TBL/(12k)

U i•i = -1·246MBLO·0717i + TBL 2j/(6k)+C

where C is an undetermined constant which requires an additional boundary condition
for its evaluation.

An important property ofequations (25), (26) and (28) is the rapid decay ofthe exponen
tial terms with the distance from the boundary. For instance at the second row of joints
from the boundary, the exponential terms diminish to 7·2 per cent, at the third row to
0·5 per cent (cf. Fig. 13). For a rectangular gridwork and non-zero axial loads p~, p~

the solution can be obtained analogously, and rapid decay from the boundary is again
found.

If the finite difference method is used, steps longer than ~y = L near the boundary
would obviously lead to an error of the order of displacement difference between the
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surface and the first row of joints. With the exception of extra large gridworks, such an
error should not be committed. Therefore, the first two or three steps dy of the grid near
the boundary should be selected equal to L. This is not necessary, however, for certain
boundary conditions for which the boundary disturbance is absent. From equation (28)
it is seen that the boundary disturbance in a half-space under a translationally symmetric
deformation disappears if the midspan moment M B is zero, which happens, according to
(27), if

<PI = <Po (29)

is prescribed as the boundary condition (Fig. 5). In the absence of translational symmetry,
or for other shapes of the boundary (near corners), the condition for zero disturbance
is, of course, somewhat different.

The cumbersome need of using a small step dy equal to L near the boundary may be
circumvented by a supe;position technique which is similar to the handling of the edge
effects in bending theory of shells. The sharply decaying disturbance is first removed by
modifying the boundary conditions. In this case for instance, this may be achieved by
imposing the condition of equality for the rotation in the first and the second nodal point
from the boundary. The finite difference solution is then obtained using a large grid step
throughout, such as dy = 5L. Subsequently, on the solution thus obtained, the solution
of the boundary disturbance alone, due to the mismatch in MB or <PB' is superimposed.
For an approximate calculation of the disturbance, equations (25) or (28) for a half-space
can be used, except in the vicinity of corners. In a general case, the boundary disturbance
could be obtained without the use of finite difference calculus by writing the finite difference
equilibrium equations (5a}-(5c) for only a small region near the surface and solving them
as a system of algebraic equations (the interior of the frame being considered as perfectly
rigid).

It should be mentioned that the exact solution of the corresponding continuum problem
for the boundary disturbance is not a good approximation. The differential equations
analogous to difference equations (23) are solved only by trigonometric functions of
wavelength 2·57L and not any decaying exponentials.

7. NUMERICAL EXAMPLES

To explore the accuracy obtainable by the finite difference method with steps dX, dy
greater than Lx, L y , an analysis of a large rectangular plane frame was programmed for
computer and the efficiency of various types of solution grid, shown in Figs. 6 and 7, was
investigated. One grid was chosen with constant step size; in other grids a reduction of the
step size near boundaries was considered. To achieve an accurate representation of the
boundary conditions, all of the grids were chosen so as to make the stress boundary of the
continuum (the midspan of imaginary members crossing the boundary) coincide with the
middle of the grid step. The finite difference approximation of equations (6a}-(6c) for
varying step size was determined by means of Taylor series expansions. For the sake of
simplicity, the properties of members as well as the initial vertical axial loads P~ were
considered as constant. The frame was assumed to have 52 floors, 12 column lines, Lx = 18 ft,
L y = 12 ft. The horizontal beams were considered as 16 WF 40 standard sections, and
the columns as 14 WF 320 sections with 2 cover plates 18 x 1 in. (In an exact analysis, this
plane frame leads to 1872 equilibrium equations for joints with a band width of 75.)
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The solution was carried out for various values of the vertical initial load. The incre
mental load was considered as a constant horizontal distributed load on the left boundary,
p x = 30Lx lb/ft. The results of the analyses obtained with various grids are shown in
Figs. 8 and 9. It is seen that grids with a coarse step within the frame give quite accurate
results, provided that the first three rows of nodal points near the vertical boundaries are
chosen to coincide with the joints of the frame. The results are sufficiently accurate for
small as well as large initial axial loads, so that this method may also be used for determina
tion of the buckling of the frame as a whole.

In addition to the frame rigidly supported at the base, analyses have also been carried
out for a frame whose boundary condition at the base was modified by releasing the rota
tion restraint but prescribing equal rotations with the second row of grid joints [equation
(29)]. For this boundary condition the boundary disturbance at the base is minimized,
and, away from the base, a grid with a large step throughout (grid 5, Fig. 7) does indeed
give results very close to the exact solution, as is seen in Fig. 13. The solution for the rigid
base boundary condition may then be approximately obtained by superimposing the
solution for the boundary disturbance in a half-space obtained by finite difference cal
culus, equation (25).

It should be noted that in the typical case when the axial forces and member properties
vary in the vertical direction, substitution (22a) yields finite difference equations which
are only slightly more complicated than in the above case and can be solved with almost
equal ease.
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8. CONCLUSIONS

1. Large grid frameworks under initial axial forces can be approximated by a micro
polar continuum. The incremental equations of equilibrium in terms of displacements
are given by equations (6aH6c), the incremental strain energy density is expressed by
equations (12) and (14), the stresses and couple stresses are defined by equations (15)
and (19), and the boundary conditions for prescribed forces are given by equation (21).
Thecontinuous approximation is formulated even for the case ofvariable member properties
and variable initial axial forces.

2. The finite difference method with grid steps larger than the distances between the
joints of a frame may be used as an approximate method of solution, substantially reducing
the number of unknowns. This has been demonstrated by numerical examples.

3. A substitute frame in general does not exist, but the finite difference method serves
the same purpose.

4. In grid frameworks, as well as in micropolar continua, displacements and rotations,
in general, vary sharply near the boundary. To obtain accurate results, such boundary
disturbances may not be disregarded. Therefore, the first two or three rows of nodal
points near the boundary ought to coincide with the joints of the frame. However, by
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modifying the boundary conditions [e.g. according to (29)], the boundary disturbance can
be made small so that the grid step may be kept large throughout the whole body. The
local effect of a change in boundary conditions must then be approximately evaluated
and superimposed.

5. The couple stresses do not approximate the midspan bending moments in a gridwork
with members of unit length but a more complex relation [equation (19)] applies.

6. The continuum approximation of the potential energy of individual members
must be expressed exactly up to terms with second order derivatives of joint rotation
even if these derivatives are not needed for the expression of potential energy of the micro
polar continuum.
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A6cTpaKT- nOKa3ano, 'ITO MUKpOIlOJlllpnaR cpe,!l.a lIBJlSleTCli npH6milKelll1CM B CMblCJle cnJlowHolf CPCL(bl
).1J111 60JlbWHX CCT'IaTbIX KapKacOB, 1l0).1 BJllillHHeM Ha'laJlbHbIX OCCBblX YCHJlHH. $OPMYJlIiPYIOTCli 1Hcprli1l
ll,c<jJopMallHH. YCJlOBHlI paBHOBCCHR If KpaCBble YCJlOBlfli. D.alOTcli B3rJIlIll, Ha HeKOTopble npOHIBOpe'lHlI
B npell,blll,YUIHX nOnbITKaX BbIB0).111 MIfKpOnOJlllpHOH aHanorHH ll,Jlll CeT'IaTbIX KOHCTPYKllHH. I1cCJlell,YCTcll
MeTOLl KOHC'IHbIX pa3HOCTeH, KOTOPblii, KaK ell,IHlCTBeHHbIH, B03MOlKeH ll,Jlll aHamna nOJlHoro nOBCL\CHHlI
60"1BlLIOH paMbl. Ha OCHOBe '1IfCJlOBbIX nplfMcpOB, 11'01' MeTOLl LlaCT KOHe'IHO HallJlClKamlfe pa3YJlbTaTbl,
npH Ifcnonb30BaHHIf, 60nee MeHce, HeH3BecTHbIX, no cpaBHeHHIO C TO'lHbIM aHamnOM. MeTO).1 MOlKHO,
TaKlKe, npUMCHIfTb K3all,a'laM nOJlHOrO BbII1Y'IIfBaHlfli. )].aJlce yKa3aHo, '1TOTaK Ha3blBaeMaSl1KBlfBaneHTHaSi
paMa Bo06me He cymecTByeT, HecMOTpli Ha TO, 'ITO MeTO)]. KOHe'lHbIX pa3HOCTeH OTBC'IaeT 1TOHlKe caMOH
ceml. Ha KOllel\, npIiBOll,HTCli. 'ITO BMHKpononllpHblX cnnOlLlHbIX cpe)].ax cymecTBylOT HeKOTopble KpaeBble
B03MymcHHlI, KOTOpbIC 6blCTPO YMeHbwalOTCll rrplf OT).1aJleHHIi 01' Kpall. npell,naraeTCli ynpoweHHoe
paCCMOTpeHue TaKHX TO B03MYUICHlflf.


